有害化学物質の環境汚染実態の解明と分析技術の開発に関する研究

一GC/MSを用いた水質中脂肪酸メチルエステル (FAME) 等の多成分分析法の検討一

吉岡敏行, 山辺真一, 大月史彦, 新 和大(水質科)

【調査研究】

有害化学物質の環境汚染実態の解明と分析技術の開発に関する研究

--GC/MSを用いた水質中脂肪酸メチルエステル(FAME)等の多成分分析法の検討---Study for Simultaneous Analysis Method of Fatty acid methyl ester (FAME) in Water by GC/MS

吉岡敏行, 山辺真一, 大月史彦, 新 和大(水質科) Toshiyuki Yoshioka, Shinichi Yamabe, Fumihiko Otsuki, kazuhiro Atarashi (Department of Water)

要旨

「化学物質の審査及び製造等の規制に関する法律」において生態影響の観点から優先評価物質に指定されたメチル=ドデカノアートを含む脂肪酸メチルエステル(FAME)等14物質の水質分析法を検討した。対象物質は加水分解性があり、試料の保存ができなかったことから、試料採取時に現場であらかじめ、ヘキサン抽出を行う方法とした。抽出液はシリカゲルカラムでクリーンアップし、GC/MS-SIM測定する方法とした。検討の結果、分析法の検出下限値は $0.26\sim1.9$ ng/L、定量下限値は $0.66\sim4.9$ ng/Lとなり、高感度な多成分分析方法が確立できた。

[キーワード: 脂肪酸メチルエステル,加水分解,GC/MS,多成分分析]

[Key words: Fatty acid methyl ester, Hydrolysis, GC/MS, Simultaneous analysis]

1 はじめに

本県では、最新の化学物質情報の入手や分析技術の習得等を目的に、毎年、環境省が実施する化学物質環境実態調査に参画し、化学物質の新規分析法を開発し、環境中の濃度の把握に努めている。今回、平成24年度化学物質環境実態調査でメチル=ドデカノアート(別名、ラウリン酸メチル)を含む脂肪酸メチルエステル等の水質分析法について検討した。

文献調査の結果、脂肪酸メチルエステル類の分析は、食品やバイオディーゼル燃料中の脂肪酸類をメチル化して分析する事例いはあったが、環境水中の脂肪酸メチルエステル類の分析方法はほとんど情報が得られなかった。GC/MS測定の事例は数多くあり、脂肪酸メチルエステル専用の異性体分離可能なGCカラム等も販売されている²。

対象物質の異性体と同族体の合計14物質について、抽出は対象物質の物性等を考慮し、固相抽出及び液液抽出を検討した。また、クリーンアップとしてシリカゲルカートリッジカラムとグラファイトカーボンブラックによる方法を検討し、高感度多成分分析法を確立することができたので報告する。

2 実験方法

2.1 試薬

ラウリン酸メチル:和光純薬工業製,デカン酸メチル: 和光純薬工業製,デカン酸イソプロピル:東京化成工業

製, n-オクタン酸イソアミル:東京化成工業製, n-ウンデ カン酸メチル:東京化成工業製, n-オクタン酸アミル:東 京化成工業製, デカン酸プロピル: 東京化成工業製, ウン デカン酸エチル:東京化成工業製、ミリスチン酸メチル: 和光純薬工業製、パルミチン酸メチル:和光純薬工業製、 ステアリン酸メチル:和光純薬工業製, アラキジン酸メチ ル:和光純薬工業製、ベヘン酸メチル:和光純薬工業製、 テトラコ酸メチル: MP Biomedicals製, ナフタレン-ds: 環境分析用 和光純薬工業製、ポリエチレングリコール 200:東京化成工業製、ヘキサン、アセトン:残留農薬・ PCB試験用(5000倍濃縮品) 和光純薬工業製, 無水硫 酸ナトリウム:残留農薬試験用 関東化学製, LC-Si(1 g/6mL): Glass Tube w/PTFE Frits SUPELCO 製, ワコーゲル(R) C-200: 和光純薬工業製, スペルク リンENVI-Carb (25mg/6mL) : SUPELCO製, 精製水: Milli-Q Advantage+EDE-Pak Merck Millipore製

2.2 GC/MSの測定条件

今回検討した対象物質を表1に、GC/MSの測定条件を表2に、モニターイオンを表3に示す。対象物質の定量は、保持時間の近いシリンジスパイク内標準を用いた。

2.3 前処理方法の検討

今回検討した分析フローを図1に示す。抽出方法は、液液抽出とディスク型固相抽出を比較検討した。また、クリーンアップは、シリカゲルについて市販カートリッジカラムと自家調製した5%含水シリカゲルカラム及び市販グラファイト

表 1 対象物質

表2 GC/MSの測定条件

使用機種	:GC: Agilent7890A, MS:JMS-Q1000GCMkI
カラム	: HP-INNOWAX 30 m×0.25 mm×0.25 µm (Agilent)
カラム温度	:50°C (2min)-20°C/min-120°C (0min)-5°C/min-260°C (6min)
注入口温度	:240°C

注入方法 :スプリットレス (パージ開始時間1.5 min)

注入量 :1 μL

キャリアーガス :ヘリウム 1.5 mL/min(定流量)

インターフェース温度 :230℃ イオン源温度 :210℃ イオン化電圧 :70eV 検出モード :SIM

表3 モニターイオン

	保持時間	定量イオン(Q)	参照イオン(I)
naphthalene-d ₈	0:10:19	136	. 7
acenaphthene-d ₁₀	0:16:35	164	72
phenanthrene-d ₁₀	0:25:53	188	112
fluoranthene-d ₁₀	0:32:27	212	9-
デカン酸メチル	0:08:22	143	74
デカン酸イソプロピル	0:08:49	173	155
n-オクタン 酸イソアミル	0:09:12	145	127
ウンデカン酸メチル	0:09:44	157	143
n−オクタン酸アミル	0:09:56	145	127
デカン酸プロピル	0:10:06	173	155
n−ウンデカン酸エチル	0:10:21	214	101
ラウリン酸メチル	0:11:17	214	171
ミリスチン酸メチル	0:14:45	242	199
パルミチン酸メチル	0:18:22	270	227
ステアリン酸メチル	0:21:52	298	143
アラキジン酸メチル	0:25:11	326	283
べへン酸メチル	0:28:18	354	143
テトラコ酸メチル	0:31:13	382	143

カーボンカートリッジカラムについて比較検討した。

5%含水シリカゲルの調製は、シリカゲルを130℃で一夜(約16時間程度)加熱後、透明すりあわせ共栓付き三角フラスコに入れ、密栓して室温まで放冷し、シリカゲル95gに対して精製水5mLを滴下した。密栓し、発熱が終了するまで、静かに混合し、その後、更に振とう器で約1時間振とうし、乾燥剤としてシリカゲルを入れたデシケーター中で1日以上放置した。内径1cmのガラスカラムに5%含水シリカゲル1gを、ヘキサンを用いて湿式充填し、この上部に無水硫酸ナトリウムを約1cm積層したものを使用した。

2.4 分解性スクリーニング試験及び保存性試験

「化学物質環境実態調査実施の手引き(平成20年度版)」 3 に基づき,分解性スクリーニング試験を実施した。 試験液は精製水を用いてpH5,pH7,pH9の試料水を作成し,対象物質の濃度が $0.2\,\mu$ g/Lになるように添加し,1時間後及び 7 日後(明所及び暗所に保存)にヘキサン抽出を行い,GC/MSで測定した。

保存性試験は、河川水に対象物質の濃度が $0.1 \mu g/L$ になるように添加し、添加1時間後及び1日後、4日後、7日後(冷暗所に保存)にヘキサン抽出、シリカゲルクリーンアップを行い、GC/MSで測定した。

2.5 装置検出限下界値及び分析法の検出下限値と定量下 限値

装置検出限下界値(IDL)及び測定方法の検出下限値

(MDL)と定量下限値(MQL)は、「化学物質環境汚染実態調査の手引き(平成20年度版)」³に従って実施した。IDLは、検量線に用いる最低濃度付近の標準液を7回繰り返し測定し、得られた測定値の標準偏差を用いて算出した。MDLとMQL試験には、河川水1Lに標準物質5ngを添加した試料を7個作成し、分析フローに従い前処理を実施した後、GC/MSで測定し、得られた測定値の標準偏差を用いて算出した。

2.6 添加回収試験

河川水は、旭川(乙井手堰)の水質試料1Lに一定量の標準物質(5~25ng)を添加し、海水は水島沖の水質試料1Lに一定量の標準物質(5~25ng)を添加し、分析フローに従い前処理を実施した後、GC/MSで測定した。

3 検討結果及び考察

3.1 GC/MS測定条件の検討結果

脂肪酸メチルエステル類のGC/MS測定にはWAX系カラムが使用されている例 $^{\circ}$ が多く見受けられることから、HP-INNOWAX(30 m)を用いて対象物質の標準品を測定したところ、図 2 に示すように 14 物質が分離したため、以後このカラムで測定することとした。

対象物質の検量線を図3に示す。いずれの物質も $2\sim$ 500ng/mLの濃度範囲(シリンジスパイクとの濃度比で $0.1\sim25$ の範囲)において、 R^2 が0.996以上と良好な検量線が作成できた。

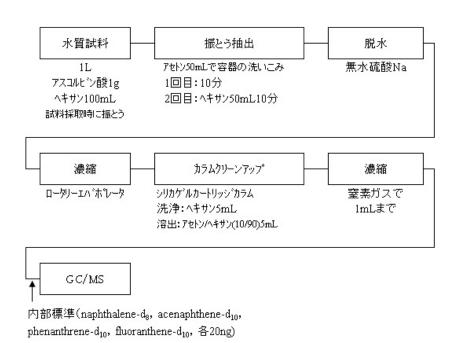
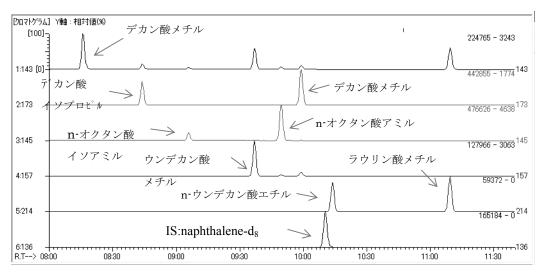
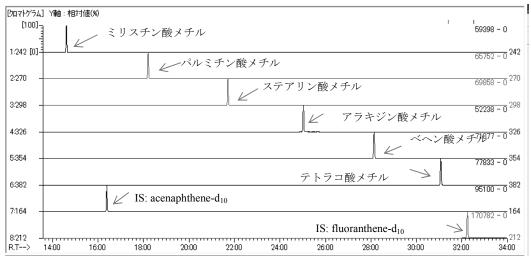
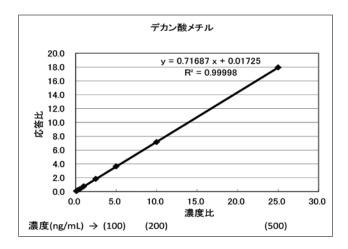
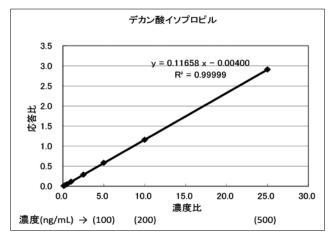
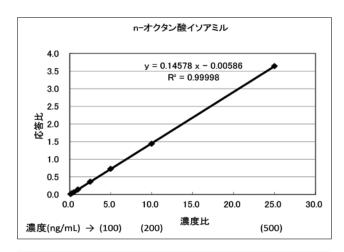
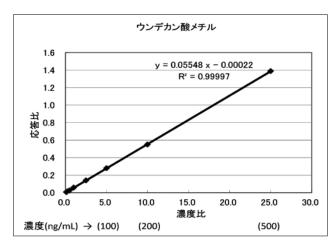
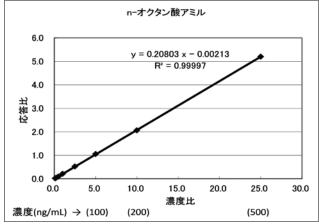
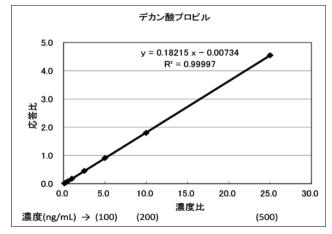
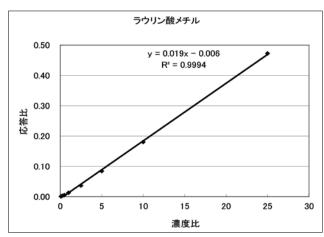



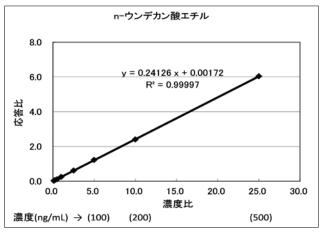
図1 分析フロー

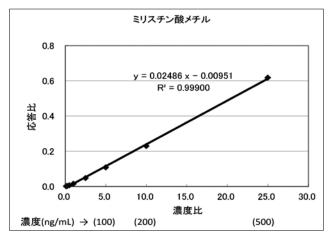






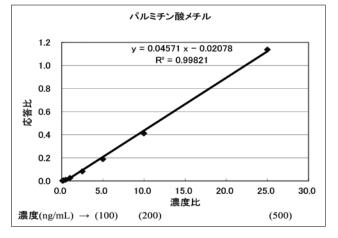

図2 標準物質のクロマトグラム

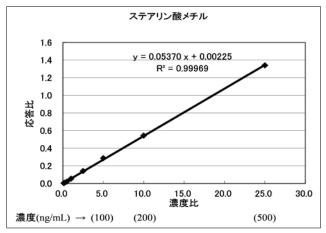


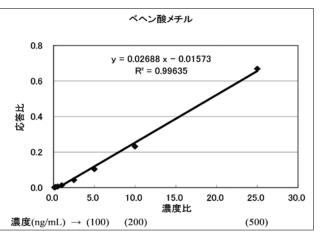


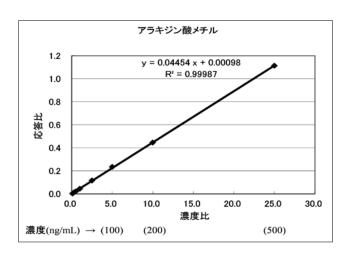












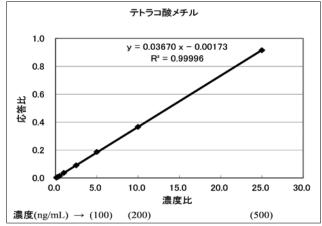
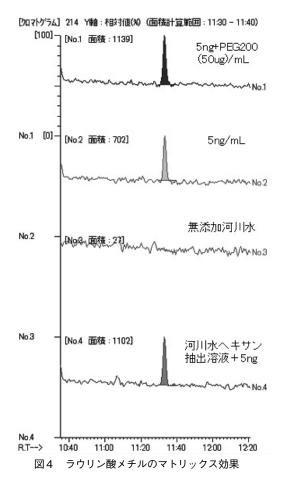


図3 検量線

マトリックスの影響を検討したところ、ラウリン酸メチル等は、正のマトリックス効果⁴⁾と考えられる測定値が異常に高くなる傾向があった。その対策としてPEG200の添加を検討した。クロマトグラムを図4に、GC/MSへの注入順の面積値の変動を図5に示す。河川抽出液に標準物質5ngを添加した試料は、標準物質5ngの面積値より約1.6倍程度大きくなった。標準物質にPEG200を 0μ g、 4μ g、 10μ g、 20μ g、 50μ g添加し、面積値を比較したところ、PEG200を 20μ g~ 50μ g添加した場合に面積値がほぼ一定となった。なお、PEG添加標準液の後にPEG無添加標準液を測定すると面積値はほぼ同じであったことから、注入順番によってもマトリックス効果を低減できる可能性があった。


3.2 抽出方法及びクリーンアップの検討結果

精製水1Lに標準物質40ngを添加し、アセトン50mLとアスコルビン酸1gの添加の有無の条件での、ヘキサン及びジクロロメタンによる液液抽出率を表4に示す。アセトンとアスコルビン酸を添加し、ヘキサン抽出した場合が最も安定した回収率が得られた

精製水0.5Lにアスコルビン酸0.5gと標準物質50ngを添加した際の,ディスク型固相カートリッジの抽出率を表5に示す。固相ディスクはメタノール,アセトン,精製水でコ

ンディショニング後, 試料水0.5Lを負荷し,洗浄,通気脱水後, ヘキサンで溶出,脱水,濃縮した。試料を入れていたガラス容器はヘキサンで洗い込み,脱水,濃縮した。ろ液はヘキサン抽出し,脱水,濃縮した。固相ディスク抽出は液液抽出と比較して若干,回収率が低く,ガラス容器への吸着が見られることから,採取した試料は,全量を抽出する必要があると考えられた。また,固相ディスクの種類によってはステアリン酸メチルの汚染が見られたため,最終的には液液抽出を採用した。

試料採取瓶を手で振とうした際のヘキサン抽出率を表6に示す。ねじ口ガラス瓶に河川水1Lと標準物質50ng及びアスコルビン酸1gを添加し、十分振とうしたのち、ヘキサン100 mLを加え、所定の時間だけ手で激しく振り混ぜヘキサン層を分取し、脱水、濃縮した。ラウリン酸メチルは30秒間、ヘキサンと試料水を激しく振とうすれば抽出率が80%以上であった。同時分析物質のなかには2分間の振とうでは60%程度の抽出率しか得られない物質もあり、同族体のうち炭素数が長くなるほど抽出率が低下する傾向があった。しかし、これらの物質は他の物質と比較して分解し難いことから、試料採取時にすべてが抽出されていなくても問題がないと考えられた。

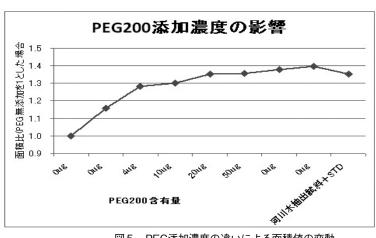


図5 PEG添加濃度の違いによる面積値の変動

表4 ヘキサン及びジクロロメタンによる液液抽出率(%)

	4~	¢サン抽出		ジクロロ	1メタン抽出	
物質名	アセトン 添加	アセトン 添加		アセトン 添加	アセトン 添加	8=
	アスコルビン酸添加	-	=	アスコルビン酸 添加	-	. –
ラウリン酸メチル	99	101	100	98	90	86
デカン酸イソプロピル	92	86	88	84	68	69
n-オクタン 酸イソアミル	90	92	86	80	66	68
n-オクタン 酸アミル	99	96	88	92	82	69
デカン酸プロピル	94	89	88	88	68	70
n-ウンデカン酸エチル	92	87	89	86	70	73
デカン酸メチル	92	88	89	86	71	72
ウンデカン酸メチル	92	86	85	89	71	72
ミリスチン酸メチル	94	83	91	94	75	86
パルミチン酸メチル	99	90	94	98	88	94
ステアリン酸メチル	97	88	92	105	92	99
アラキジン酸メチル	97	91	96	98	95	96
ベヘン酸メチル	99	97	96	104	102	102
テトラコ酸メチル	100	99	96	103	101	102

表5 ディスク型固相抽出法の抽出率(%)

NSC 000 000	9e-1	SDB-XC			SDB-XD			C18FF	
物質名	ヘキサン 溶出	ガラス容器	ろ液	ヘキサン 溶出	ガラス容器	ろ液	ヘキサン 溶出	ガラス容器	ろ液
ラウリン酸メチル	77	8	0	77	7	0	55	6	0
デカン酸イソプロピル	56	17	0	60	18	0	48	20	0
n-オクタン酸イソアミル	60	23	0	72	14	0	55	19	0
n-オクタン酸アミル	60	12	0	71	14	0	51	16	0
デカン酸プロピル	60	21	0	70	17	0	53	19	0
n-ウンデカン酸エチル	57	18	0	63	16	0	50	20	0
デカン酸メチル	63	21	1	69	19	2	52	22	2
ウンデカン酸メチル	49	13	0	57	10	0	42	12	0
ミリスチン酸メチル	43	16	0	54	13	0	40	15	0
パルミチン酸メチル	68	47	1	112	19	1	55	9	3
ステアリン酸メチル	117	172	0	204	76	6	76	12	19
アラキジン酸メチル	76	5	0	88	2	0	62	0	11
ベヘン酸メチル	70	3	0	83	1	0	55	1	6
テトラコ酸メチル	69	6	0	91	3	1	52	2	6

表6 試料採取瓶を手で振とうした際のヘキサン抽出率 (%)

#₩EEE A	ヘギャ	サン抽出(1[可目)	ヘキュ	サン抽出(21	可目)
物質名	30秒	1分	2分	30秒	1分	2分
ラウリン酸メチル	83	88	84	2	0	1
デカン酸イソプロピル	97	92	92	1	0	0
n-オクタン酸イソアミル	89	95	92	0	0	0
n−オクタン酸アミル	89	95	92	0	0	0
デカン酸プロピル	85	87	88	3	0	0
n-ウンデカン酸エチル	92	95	93	6	5	4
デカン酸メチル	97	92	92	1	0	0
ウンデカン酸メチル	85	87	88	3	0	0
ミリスチン酸メチル	75	79	79	4	4	3
パルミチン酸メチル	72	78	88	7	7	6
ステアリン酸メチル	67	80	87	17	16	16
アラキジン酸メチル	71	74	84	12	15	8
ベヘン酸メチル	57	63	73	7	7	5
テトラコ酸メチル	47	55	64	8	7	4

市販シリカゲルカートリッジカラム(SUPELCO LC-Si(1g))と自家調製した5%含水シリカゲル(1g)の溶出パターンを表7に示す。市販カートリッジカラムにはメーカーやロットによってラウリン酸メチルやパルミチン酸メチル、ステアリン酸メチルが含まれている場合があるのでアセトン洗浄等で除去できるか事前に確認する必要があった。

Supelclean ENVI-Carb (250mg/6 mL) の溶出パターンを表8に示す。ステアリン酸メチルは、ENVI-Carbをアセトンで十分洗浄しても操作ブランクが検出された。アラキジン酸メチルより炭素数が多い物質は、トルエンを流さないと溶出しなかった。シリカゲルクリーンアップを実施しても着色があり、測定に支障がある場合には、表7のラウリン酸メチルからパルミチン酸メチルまでの10物質は、ENVI-Carbとシリカゲルカートリッジカラムを連結して使用し、試料負荷、ヘキサン洗浄を行った後、ENVI-Carbは取り外し、シリカゲルカートリッジカラムをアセトン/ヘキサン (10:90) 5 mLで溶出すれば着色成分は除去可能で

あった。なお、通常の環境水の場合は、クリーンアップは シリカゲルだけで十分であると考えられた。

3.3 操作ブランク

操作ブランクのクロマトグラムを図6に示す。操作ブランクが検出されたのは、ミリスチン酸メチルとパルミチン酸メチル、ステアリン酸メチルであった。ミリスチン酸メチルは5%含水シリカゲルの使用により操作ブランクを低減することができるが、パルミチン酸メチルとステアリン酸メチルの操作ブランクはクリーンアップ工程以外からの検出が疑われるが、原因の特定はできていないが、特に、ステアリン酸メチルは操作ブランクを一定にコントロールすることが比較的困難であり、更なる検討が必要と考えられた。

3.4 分解性スクリーニング試験及び保存性試験結果

分解性スクリーニング試験結果を表9に示す。7日後に pH7とpH9ではほとんど100%分解した物質もあった。pH 5では、ある程度分解性が押さえられる傾向が確認された。

表7 SUPELCO LC-Si (1g) と5%含水シリカゲル (1g) の溶出パターン (%)

	200	L	.C-Si(1g)		() ()	5%含水シリカゲル(1g)				
	Fr1	Fr2	Fr3	Fr4	Fr1	Fr2	Fr3	Fr4		
物質名	へキサン 6mL	アセトン/ヘキサン (5/95) 5mL	アセトン/ヘキサン (10/90) 5mL	アセトン/ヘキサン (20/80) 5mL	へキサン 6mL	アセトン/ヘキサン (2/98) 5mL	Fr3	アセトン/ヘキサン (10/90) 5mL		
ラウリン酸メチル	0	0	98	0	0	0	84	16		
デカン酸イソプロピル	0	0	98	0	0	0	90	16		
n-オクタン酸イソアミル	0	0	87	0	0	0	93	16		
n-オクタン酸アミル	0	0	105	0	0	0	96	16		
デカン酸プロピル	0	0	79	0	0	0	86	15		
n-ウンデカン酸エチル	0	0	103	0	0	0	90	15		
デカン酸メチル	0	0	100	0	0	0	86	12		
ウンデカン酸メチル	0	0	114	0	0	0	91	12		
ミリスチン酸メチル	0	0	107	0	0	0	88	10		
パルミチン酸メチル	0	0	101	0	0	0	86	9		
ステアリン酸メチル	0	0	96	0	0	0	93	14		
アラキジン酸メチル	0	0	80	0	0	0	77	11		
ベヘン酸メチル	0	0	81	0	0	0	90	9		
テトラコ酸メチル	0	0	113	0	0	0	87	9		

表8 ENVI-Carb (250mg/6mL) の溶出パターン (%)

	1	Envicarb(0.25g	;)
物質名	Fr1	Fr2	Fr3
柳貝石	ヘキサン	アセトン	トルエン
	5mL	5mL	5mL
ラウリン 酸メチル	74	0	0
デカン酸イソプロピル	73	0	0
n-オクタン 酸イソアミル	63	0	0
n-オクタン酸アミル	73	0	0
デカン酸プロピル	71	0	0
n-ウンデカン酸エチル	69	0	0
デカン酸メチル	72	0	0
ウンデカン酸メチル	64	0	0
ミリスチン酸メチル	69	0	0
パルミチン酸メチル	96	2	2
ステアリン酸メチル	229	29	68
アラキジン酸メチル	27	19	26
ベヘン酸メチル	0	0	68
テトラコ酸メチル	0	0	69

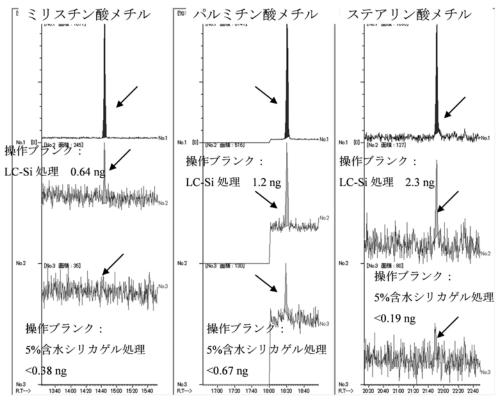


図6 操作ブランクのクロマトグラム

表9 分解性スクリーニング試験結果(残存率(%))

物質名		1時間後の	7日後の列	表存率(%)
物具石		残存率(%)	明所	暗所
	pH5	81	29	31
ラウリン酸メチル	pH7	79	0	0
	pH9	73	0	0
	pH5	85	54	46
デカン酸イソブロビル	pH7	79	0	0
	pH9	77	0	0
	pH5	85	52	45
n-オクタン酸イソアミル [*]	pH7	79	1	0
	pH9	77	10	21
500	pH5	88	31	34
n-オクタン酸アミル -	pH7	83	0	1
-	pH9	80	2	5
	pH5	86	29	31
デカン酸プロビル [・]	pH7	81	0	0
	pH9	79	0	0
	pH5	87	30	33
n-ウンデカン酸エチル [*]	pH7	82	0	0
-	pH9	81	0	0
	pH5	80	46	35
デカン酸メチル _	pH7	74	0	0
	pH9	73	0	0
	pH5	84	45	40
ウンデカン酸メチル ⁻	pH7	75	0	0
	pH9	74	0	1
	pH5	91	8	14
- ミリスチン酸メチル	pH7	91	1	0
	pH9	85	0	1
	pH5	98	10	22
バルミチン酸メチル ⁻	pH7	98	3	3
	pH9	95	4	3
	pH5	99	17	37
ステアリン酸メチル	pH7	97	2	3
erene er erenemen eriker 9-	pH9	97	36	39
	pH5	102	25	48
アラキジン酸メチル	pH7	102	7	15
-	pH9	100	83	91
	pH5	97	24	59
ベヘン酸メチル	pH7	100	9	36
100 700 700 1 00 200 200 200 200 200 200 200 200 200	pH9	96	117	143
	pH5	100	26	61
テトラコ酸メチル	pH7	100	10	52

分解性があったことからいくつかの条件で保存性試験を実施した。河川水1L当たりアルコルビン酸1g(試験溶液のpHは約3),硫酸10mL(試験溶液のpHは約1),10%硫酸銅10mLをそれぞれ添加し,保存性試験(標準物質100ng添加)を実施した。アルコルビン酸を添加したものは冷蔵保存,冷凍保存,ヘキサン添加,ヘキサン添加直後に振とう抽出したものを作成し,保存性試験を実施した。保存性試験結果を表10に示す。最も保存性が良かった条件は、アスコルビン酸とヘキサンを添加した直後に振とう抽出したものであった。硫酸や硫酸銅では分解を抑制することはできず,1週間以上,試料を保存するためには,試料採取時にあらかじめヘキサン抽出を実施しなければな

らないことが示唆された。

次に、試料採取時に現場で抽出することを想定して、試料瓶(1 L メジューム瓶: IWAKI製(テフロン®ライナーパッキン付キャップ))に河川水1 L、アスコルビン酸1gと標準物質25ngを添加し、十分混合した後、ヘキサン100mLを加えて10分間振とうし、保存性試験を実施した。一定時間経過後に、2 L 分液ロートに試料を移し、試料瓶はアセトン50mLで洗いこみ、振とう抽出を行ったところ、19日経過後も80%以上残存していた。

3.5 IDL及び分析法のMDLとMQL

IDL及びMDL, MQLを表12に示す。IDLは0.13~0.67ng/ L, MDLは0.26~1.9ng/L, MQLは0.66~4.9ng/Lとなり、

表10-1 保存性試験結果(残存率(%))

表10-2 保存性試験結果(残存率(%))

物質名	保存条件	1時間後	1日後	4日後	7日後	物質名	保存条件	1時間後	1日後	4日後	7日後
物具有	無添加 無添加	62	1	0	0		無添加	72	4	1 1 1 1 1 1	0
	アスコルビン酸添加	94	60	47	45		アスコルビン酸添加	84	51	47	50
	アスコルビン酸添加(冷凍)		65	66	67		アスコルビン酸添加(冷凍)		44	46	43
ラウリン酸メチル	アスコルビン酸・ヘキサン添加		63	46	49	デカン酸メチル	アスコルビン酸・ヘキサン添加		44	36	38
プラウン 田スプラ バレ	アスコルビン酸・ヘキサン添加→振とう抽出		71	73	74	7 /4 V ROCA 7 /V	アスコルビン酸・ヘキサン添加⇒振とう抽出		72	79	80
	スコルビン酸・ヘイソン(A) 加一 銀ごう信由 硫酸添加(pH=1)	101	49	18	9		硫酸添加(pH=1)	85	30	14	6
	が厳いない((ウハー!) 破骸細添加	121	58	24	8		硫酸銅添加	105	38	30	18
	無添加	81	17	4	0		無添加	66	1	0	0
		88	65	64	71		悪 毎 加 アスコルビン酸添加	88	56	49	49
	アスコルビン酸添加 アスコルビン酸添加(冷凍)	80					アスコルビン酸添加(冷凍)	00	56	55	53
			64	64	62	ウンデカン酸メチル		-	55	42	43
デカン酸イソプロピル	アスコルビン酸・ヘキサン添加		65	55	59	ワンアカン酸メデル	アスコルビン酸・ヘキサン添加	10.70	70	75	76
	アスコルビン酸・ヘキサン添加= 振とう抽出		78	83	85		アスコルビン酸・ヘキサン添加⇒振とう抽出	91	70 40	/5 17	/b
	碳酸添加(pH=1)	94	47	22	13		硫酸添加(pH=1)	91 110	40 50		
	硫酸銅添加	114	65	54	26		硫酸銅添加 			31	16
	無添加	78	15	3	0		無添加	74	11	1	0
	アスコルビン酸添加	88	65	64	68		アスコルビン酸添加	99	68	43	51
	アスコルビン酸添加(冷凍)		64	65	63		アスコルビン酸添加(冷凍)	1070	76	77	85
n-オクタン酸イソアミル	アスコルビン酸・ヘキサン添加		65	53	58	ミリスチン酸メチル	アスコルビン酸・ヘキサン添加	-	72	51	63
	アスコルビン酸・ヘキサン添加⇒ 振とう抽出		77	82	83		アスコルビン酸・ヘキサン添加⇒ 振とう抽出		78	79	80
	硫酸添加(pH=1)	93	45	16	9		硫酸添加(pH=1)	112	71	42	37
	硫酸銅添加	114	66	56	29		硫酸銅添加	123	64	21	1
	無添加	74	7	1	0		無添加	78	34	7	1
	アスコルビン酸添加	91	68	64	68		アスコルビン酸添加	132	85	61	62
	アスコルビン酸添加(冷凍)		69	70	69		アスコルビン酸添加(冷凍)	-	81	82	89
n-オクタン酸アミル	アスコルビン酸・ヘキサン添加		69	57	59	パルミチン酸メチル	アスコルビン酸・ヘキサン添加	10.70	84	67	77
	アスコルビン酸・ヘキサン添加コ 振どう抽出		75	81	81		アスコルビン酸・ヘキサン添加⇒ 振とう抽出		96	93	89
	硫酸添加(pH=1)		50	19	10		硫酸添加(pH=1)	99	89	72	73
	碳酸銅添加	118	70	55	25		硫酸銅添加	93	83	42	16
	無添加	69	- 5	1	0		無添加	83	73	36	25
	アスコルビン酸添加	91	67	61	61		アスコルビン酸添加	135	98	92	97
	アスコルビン酸添加(冷凍)		68	70	68		アスコルビン酸添加(冷凍)		88	89	91
デカン酸プロピル	アスコルビン酸・ヘキサン添加		67	55	56	ステアリン酸メチル	アスコルビン酸・ヘキサン添加	-	93	93	101
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	アスコルビン酸・ヘキサン添加→ 振とう抽出		74	79	79		アスコルビン酸・ヘキサン添加⇒振とう抽出	-	102	98	90
	就酸添加(pH=1)	97	49	19	9		硫酸添加(pH=1)	100	99	89	91
	荻酸銅添加	117	67	47	19		硫酸銅添加	90	91	62	46
	無添加	60	5	1	0		無添加	82	88	57	45
	アスコルビン酸添加	83	68	62	62		アスコルビン酸添加	137	99	98	108
	アスコルビン酸添加(冷凍)	0.5	69	71	69		アスコルビン酸添加(冷凍)		88	93	94
n-ウンデカン酸エチル	アスコルビン酸・ヘキサン添加		68	56	58	アラキジン酸メチル	アスコルビン酸・ヘキサン添加		94	99	109
ロウンテルンB交ぶケル			73	78	79		アスコルビン酸・ヘキサン添加⇒振どう抽出	-	104	99	88
	アスコルビン酸・ヘキサン添加⇒振とう抽出 な歌をかくいっと						硫酸添加(pH=1)	101	101	95	99
	碳酸添加(pH=1)	72 84	50 66	20 43	10 17		硫酸銅添加	90	90	69	52
	硫酸铜添加	84	00	43	17	. —	無添加	80	93	71	48
							アスコルビン酸添加	133	94	91	110
							アスコルビン酸添加(冷凍)	133	89	89	94
						ベヘン酸メチル	アスコルビン酸・ヘキサン添加	100	92	93	107
						・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	アスコルビン酸・ヘキサン添加⇒振とう抽出 アスコルビン酸・ヘキサン添加⇒振とう抽出	-	104	95 95	85
							アスコルビン酸・ヘキサン 添加→ 徹とり相出 硫酸添加(pH=1)	99	104	90	98
								99 92	91	90 70	98 54
							硫酸銅添加	92			
							無添加		102	87	62
							アスコルビン酸添加	135	95	97	115
							アスコルビン酸添加(冷凍)	-	95	95	96
						テトラコ酸メチル	アスコルビン酸・ヘキサン添加	15	91	97	108
							アスコルビン酸・ヘキサン添加⇒ 振とう抽出	-	100	96	79
							硫酸添加(pH=1)	98	100	93	95
							硫酸銅添加	89	92	77	60

高感度な多成分分析法が確立できた。

3.6 添加回収試験

添加回収試験結果を表13に示す。回収率は67~108% と比較的良好な結果であった。変動係数(CV%)は1.4~23.8%であり、パルミチン酸メチルとステアリン酸メチルが20%前後と若干高い値であったが、その他の物質は特に問題がなかった。

3.7 環境試料の分析

環境試料のクロマトグラムを図7に示す。生活排水の影響を受けている笹ヶ瀬川(笹ヶ瀬橋)と吉野川(鷺湯橋)からラウリン酸メチルがMDLをわずかに上回る濃度で検出された。また、ミリスチン酸メチルは倉敷川(下灘橋)から検出され、パルミチン酸メチルとステアリン酸メチルは笹ヶ瀬川(比丘尼橋)と倉敷川(下灘橋)から検出された。検出された地点はいずれも人口が集中した地域であるが、物質の分解性等を考慮すれば、定常的な排出源がある

表11 あらかじめヘキサン抽出実施時の保存性試験結果(残存率(%))

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******	
物質名	1日後	2日後	5日後	7日後	19日後
ラウリン酸メチル	91	101	91	91	107
デカン酸イソプロピル	103	100	100	98	85
n-オクタン酸イソアミル	104	102	106	100	84
n-オクタン酸アミル	100	98	104	95	89
デカン酸プロピル	105	103	107	92	89
n-ウンデカン酸エチル	102	98	104	92	89
デカン酸メチル	105	100	100	98	85
ウンデカン酸メチル	101	87	93	97	81
ミリスチン酸メチル	95	99	94	95	107
パルミチン酸メチル	110	138	109	115	148
ステアリン酸メチル	123	185	137	148	185
アラキジン酸メチル	113	111	108	98	97
ベヘン酸メチル	109	109	101	101	104
テトラコ酸メチル	110	112	101	103	94

表13-1 添加回収試験結果

物質名	試料	添加量 (ng)	検対数	検出濃度 (ng/L)	添加 回収率(%)	変動係数 (%)
	Aud tet I.	無添加	2	< 0.35	-	-
	河川水	25.0	6	26.1	104	6.3
ラウリン酸メヂル	∆ = _1,	無添加	2	< 0.35	-	-
	海水	25.0	6	21.9	88	4.9
	河川水	無添加	2	< 0.34	-	-
デカン酸イソプロピル	例川水	10.0	6	10.1	101	6.4
	海水	無添加	2	< 0.34	=	-
	/毋小	10.0	6	8.4	84	4.3
	河川水	無添加	2	<0.17	-1	-
n-オクタン酸イソアミル -	例川水	5.0	6	4.7	95	1.4
	海水	無添加	2	< 0.17	-	-
	伊小	5.0	6	4.5	89	6.4
	Seef rer_L.	無添加	2	<0.18	-	-
_L > > o #fo→> o	河川水	5.0	6	5.0	100	5.1
ーオクタン酸アミル	海水	無添加	2	<0.18	-	-
	伊小	5.0	6	4.2	84	4.2
	河川水	無添加	2	<0.28	-	-
デカン酸プロピル	例川水	5.0	6	5.1	102	7.0
アカン嵌ノロビル	海水	無添加	2	<0.28	-	-
	伊小	5.0	6	4.1	82	4.9
	Seef rer_L.	無添加	2	<0.17	-	-
n-ウンデカン酸エチル	河川水	10.0	6	10.3	103	6.2
n-ワンケカン酸エテル	海水	無添加	2	< 0.17	-	-
	/毋水	10.0	6	8.3	83	5.5
	ी- 11 मिर	無添加	2	<0.13	-	-
デカン酸メチル	河川水	5.0	6	5.2	103	4.4
アルマ酸プサル	海水	無添加	2	<0.13	-	-
	(母小	5.0	6	4.5	89	4.7

ものと推察された。

4 まとめ

ラウリン酸メチルを含む脂肪酸メチルエステル等14物質 の水質分析法について検討し、次の結果を得た。

- 1) 水質試料 1 L をヘキサン抽出し、シリカゲルカラムで クリーンアップ後、最終液量 1 mLとし、GC/MS法で 測定する方法で、MDLは0.26~1.9ng/L、MQLは0.66 ~4.9ng/であった。
- 2) 添加回収試験の結果,回収率は67~108%,変動係数は1.4~23.8%であった。
- 3) いずれの物質も加水分解性が認められ、試料を保存することができなかった。そのため、試料採取時に現場であらかじめヘキサン抽出する条件で保存性試験を実施したところ、2週間以上の保存が可能であった。
- 4) ミリスチン酸メチルとパルミチン酸メチル、ステアリ

表12 IDL及び分析法のMDLとMQL

物質名	試料量 (L)	最終液量 (mL)	IDL 試料換算値 (ng/L)	MDL (ng/L)	MQL (ng/L)
ラウリン酸メチル	-33		0.35	1.1	2.9
デカン酸メチル			0.13	0.45	1.2
デカン酸イソプロピル	T). ⊴3.		0.34	0.43	1.1
n-オクタン酸イソアミル			0.17	0.29	0.74
ウンデカン酸メチル	. .		0.28	0.55	1.4
n-オクタン酸アミル			0.18	0.26	0.66
デカン酸プロピル	_ 1	1	0.28	0.38	0.99
n-ウンデカン酸エチル	1	1	0.17	0.39	0.99
ミリスチン酸メチル	- 3.0		0.38	1.3	3.3
パルミチン酸メチル			0.67	1.9	4.9
ステアリン酸メチル	- 2.0		0.19	0.46	1.2
アラキジン酸メチル	-		0.31	0.97	2.5
べへン酸メチル	-		0.58	1.8	4.7
テトラコ酸メチル			0.45	1.0	2.6

表13-2 添加回収試験結果

	2010-2	- \w\\\\\		ベルロイト		
物質名	試料	添加量 (ng)	検対数	検出濃度 (ng/L)	添加 回収率(%)	変動係数(%)
ウンデカン酸メチル	河川水	無添加	2	<0.28	-	-
		10.0	6	9.6	96	4.1
	海水	無添加	2	<0.28	-	-
		10.0	6	8.1	81	5.0
ミリスチン酸メチル	河川水	無添加	2	< 0.35	-	-
		25.0	6	27.0	108	6.3
	海水	無添加	2	<0.35	-	-
		25.0	6	20.5	82	10.4
パルミチン酸メチル	河川水	無添加	2	< 0.67	-	-
		25.0	6	24.2	97	4.6
	海水	無添加	2	< 0.67	=/	-
		25.0	6	16.8	67	23.8
ステアリン酸メヂル	河川水	無添加	2	<0.19	-	-
		5.0	6	5.2	104	3.2
	海水	無添加	2	< 0.19	-	-
		5.0	6	3.6	72	19.7
アラキジン酸メチル	河川水	無添加	2	< 0.31	=/	-
		25.0	6	26.2	105	4.1
	海水	無添加	2	< 0.31	:1	-
		25.0	6	18.1	72	8.9
ベヘン酸メチル	河川水	無添加	2	<0.58	=/	-
		25.0	6	26.3	105	10.0
	海水	無添加	2	<0.58	-	-
		25.0	6	19.4	77	9.7
テトラコ酸メチル	河川水	無添加	2	< 0.45	- /	-
		10.0	6	10.6	106	12.1
	海水	無添加	2	< 0.45	-/	-
		10.0	6	7.8	78	12.0

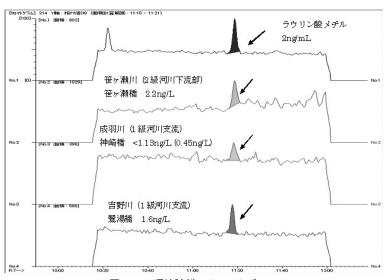


図7-1 環境試料のクロマトグラム

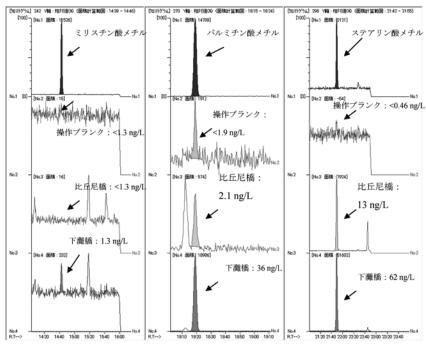


図7-2 環境試料のクロマトグラム

ン酸メチルは操作ブランクが検出され、汚染源の特定 と低減化についてさらなる検討が必要と考えられた。

5)環境試料を分析した結果、ラウリン酸メチルは生活排水の影響を受ける地点から1.6~2.2ng/L検出された。 ミリスチン酸メチルとパルミチン酸メチル、ステアリン酸メチルは、1.3~62ng/L検出された。

なお、本研究は環境省委託の平成24年度化学物質環境実 態調査と連携して実施した。

文 献

1)シグマアルドリッチジャパンHP:脂肪酸/FAMEsアプリケーションガイド

http://www.sigma-aldrich.co.jp/up_catalog/SAJ1357.pdf

2) シグマアルドリッチジャパンHP: 脂肪酸メチルエステル分析用カラム

http://www.sigmaaldrich.com/japan/analytical-chromatography/gas-chromatography/fame.html

- 3)環境省総合環境政策局環境保険部環境安全課:化学物質環境実態調査実施の手引き(平成20年度版),平成21年3月,2009
- 4) 奥村為男: キャピラリー・GC/MSによる水質中の農薬 類及びその酸化生成物の定量 - 標準液のPEG注入法 - . 環境化学、Vol 5 . No.3, 575-583, 1995