6. すき込み前のレンゲ生草重の簡易推定法

[要約]

レンゲを活用した水稲作の施肥設計に必要なレンゲ生草重は、草高と被度から簡易に推定できる。

[担当] 岡山県農林水産総合センター農業研究所 環境研究室

[連絡先]電話086-955-0532

[分類] 技術

[背景・ねらい]

レンゲの窒素肥効を予測し効率的な施肥設計を行うには、レンゲすき込み時の生草重を知る必要がある。一般的に、生草重は一定面積の地上部を刈り取って計測されるが、田植え前の繁忙期に、圃場ごとの生草重を短時間に計測することは困難である。そこで、レンゲ生草重の簡易推定法を確立し、効率的な施肥設計によるレンゲ稲作を推進する。

[成果の内容・特徴]

- 1. 開花期から黄熟期におけるレンゲの生草重は、「生草重(kg/10a)= $87 \times$ 草高(cm)+ $18 \times$ 被度(%)-2,100」で推定できる(図 1)。
- 2. 草高はレンゲ上に置いた竹さし(長さ 1 m) の地表高を測定し、被度はレンゲの被覆割合を目視により判定する(図 2 、 3)。
- 3. 推定式を基に被度と草高から推定する早見表を作成した(表1)。なお、生草重の推定誤差は約300kg/10aである。

[成果の活用面・留意点]

- 1. 生草重の推定式は、生草重(最小250kg~最大6,300kg/10a)を目的変数とし、ステップワイズ 法により選択した、草高(最小8cm~最大60cm)、被度(最小20%~最大100%)を説明変数とす る重回帰分析により求めた。
- 2. 圃場ごとに、レンゲの生育が平均的な数地点を計測して、生草重の平均値を求める。
- 3. 入水 2 週間前にすき込んだ開花期のレンゲの窒素肥効は、生草重1,000kg/10aに対して約 1,9kg/10aと推定される。よって、生草重の推定誤差300kg/10aによる窒素肥効は、約0.6kg/10a と考えられる。

[具体的データ]

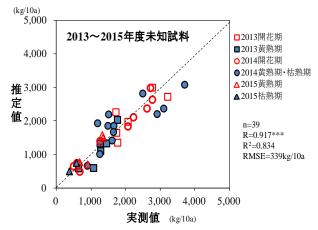


図1 レンゲ生草重の未知試料による精度検証 「推定式 y=87×草高+18×被度-2,100」

図2 レンゲの被度と草高の測定 注)被度は1㎡中のレンゲ被覆割合を目視で判断し(図3 を参照)、草高はレンゲ上に置いた竹製1m差しの地 表高を別の物差しで測定する。

被度100%

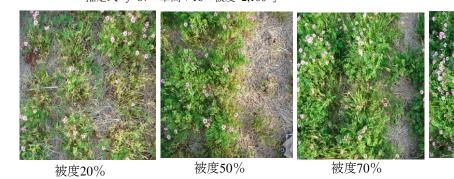


図3 レンゲ被度(%)の目安(5月24日調査)

表1 レンゲ生草重の推定(開花期~苗熟期)

次1 レンケエ学堂*/7世紀(
		被度(%)								
		20	30	40	50	60	70	80	90	100
草高 (cm)	15						500	700	800	1,000
	20				600	800	900	1,100	1,300	1,500
	25			800	100	1,200	1,300	1,500	1,700	1,900
	30	800	1,000	1,200	1,400	1,600	1,800	2,000	2,100	2,300
	35	1,300	1,500	1,700	1,800	2,000	2,200	2,400	2,600	2,800
	40	1,700	1,900	2,100	2,300	2,500	2,700	2,800	3,000	3,200
	45	2,200	2,300	2,500	2,700	2,900	3,100	3,300	3,500	3,600
	50	2,600	2,800	3,000	3,200	3,300	3,500	3,700	3,900	4,100
	55	3,000	3,200	3,400	3,600	3,800	4,000	4,100	4,300	4,500
	60	3,500	3,700	3,800	4,000	4,200	4,400	4,600	4,800	5,000

注) レンゲ生草重(kg/10a)=87×草高(cm)+18×被度(%)-2,100の推定式により作成

[その他]

研究課題名:水田作における緑肥を活用した低投入型施肥技術の確立

予算区分:県単

研究期間:2011~2015年度

研究担当者:山本章吾、景山博行、鷲尾建紀、石井 恵

関連情報等:1)平成25年度試験研究主要成果、<u>5-6</u>、<u>7-8</u>、<u>9-10</u>

2) 平成27年度試験研究主要成果、3-4、17-18